ããŒã¿é§ååã®æææ±ºå®ã®ããã®æç³»ååæãšäºæž¬ææ³ãæ¢ããARIMAãææ°å¹³æ»æ³ãªã©ãäžçã®äºäŸãšå ±ã«åŠã³ãŸãã
æç³»ååæïŒäºæž¬ææ³ - ç·åã¬ã€ã
æç³»ååæã¯ãæéçµéãšãšãã«åéãããããŒã¿ãã€ã³ããçè§£ãäºæž¬ããããã«äœ¿çšããã匷åãªçµ±èšææ³ã§ãããã®ã¬ã€ãã§ã¯ãæç³»ååæãšãã®äºæž¬ãžã®å¿çšã«ã€ããŠå æ¬çã«æŠèª¬ããŸããåºç€ã®çè§£ããé«åºŠãªæ¹æ³è«ã®æ¢æ±ãŸã§ããã®ãªãœãŒã¹ã¯äžçäžã®åå¿è ããçµéšè±å¯ãªå°éå®¶ãŸã§ã察象ãšããŠããŸãã
æç³»åããŒã¿ã®çè§£
æç³»åããŒã¿ã¯ãæéé ã«ã€ã³ããã¯ã¹ä»ããããããŒã¿ãã€ã³ãã®ã·ãŒã±ã³ã¹ã§æ§æãããŸãããã®ãããªããŒã¿ãåæããããšã§ããã¿ãŒã³ããã¬ã³ããå£ç¯æ§ãç¹å®ããå°æ¥ã®å€ãäºæž¬ããããã«äœ¿çšã§ããŸããæç³»åããŒã¿ã®äŸã¯ãäžçäžã®ããŸããŸãªæ¥çã§è±å¯ã«èŠãããŸãã以äžãå«ãŸããŸãïŒ
- éèïŒæ ªäŸ¡ãçºæ¿ã¬ãŒããçµæžææšã
- å°å£²ïŒå£²äžé«ãåšåº«ã¬ãã«ããŠã§ããµã€ããã©ãã£ãã¯ãïŒäŸïŒAmazonã®ã°ããŒãã«å£²äžããŒã¿ïŒ
- ãã«ã¹ã±ã¢ïŒæ£è ã®ãã€ã¿ã«ãµã€ã³ãçŸæ£ã®æç çãå ¥é¢æ£è æ°ã
- ç°å¢ç§åŠïŒæ°æž©ãéæ°Žéãæ±æã¬ãã«ã
- è£œé æ¥ïŒçç£é«ãæ©æ¢°ã®æ§èœããµãã©ã€ãã§ãŒã³ã®ææšã
æç³»åã®äž»èŠãªæ§æèŠçŽ
äºæž¬ææ³ã«å ¥ãåã«ãæç³»åãäžè¬çã«æ§æããåºæ¬çãªèŠçŽ ãçè§£ããããšãéèŠã§ãïŒ
- ãã¬ã³ãïŒããŒã¿ã®é·æçãªæ¹åæ§ã§ãæéãšãšãã«å¢å ãæžå°ããŸãã¯å®å®ã瀺ããŸãã
- å£ç¯æ§ïŒæ¥æ¬¡ã鱿¬¡ã幎次ãµã€ã¯ã«ãªã©ãåºå®ãããæéå ã§ç¹°ãè¿ããããã¿ãŒã³ãïŒäŸïŒäžççãªã¯ãªã¹ãã¹ã·ãŒãºã³ã®å°å£²å£²äžå¢å ïŒ
- åšææ§ïŒåºå®ãããæéã§ã¯ãªããããé·æçãªå€åãçµæžãµã€ã¯ã«ã«é¢é£ããããšããããŸãã
- äžèŠåæ§ïŒãŸãã¯æ®å·®ïŒïŒä»ã®èŠçŽ ã§ã¯èª¬æã§ããªãã©ã³ãã ãªå€åããã€ãºã
ããŒã¿ã®ååŠçïŒããŒã¿ã®æºå
äºæž¬ææ³ãé©çšããåã«ãæç³»åããŒã¿ãååŠçããããšãäžå¯æ¬ ã§ããããã«ã¯ããã€ãã®éèŠãªã¹ããããå«ãŸããŸãïŒ
- ã¯ãªãŒãã³ã°ïŒããŒã¿ã®æ¬ æå€ãå€ãå€ããšã©ãŒãåŠçããŸããäŸãã°ãç·åœ¢è£éãªã©ã®ææ³ãçšããŠæ¬ æå€ãè£å®ããŸãã
- 倿ïŒåæ£ãå®å®ãããããããŒã¿ãã¢ããªã³ã°ã«é©ãããã®ã«ããããã«å€æãé©çšããŸããäžè¬çãªå€æã«ã¯ä»¥äžããããŸãïŒ
- 察æ°å€æïŒææ°é¢æ°çã«å¢å ããããŒã¿ã«æçšã§ãã
- ããã¯ã¹ã»ã³ãã¯ã¹å€æïŒåæ£ãå®å®ãããããã«èšèšãããäžé£ã®ã¹ãä¹å€æã
- åè§£ïŒæç³»åããã¬ã³ããå£ç¯æ§ãæ®å·®ã®èŠçŽ ã«åé¢ããŸããããã¯ãSTLïŒSeasonal Decomposition of Time SeriesïŒãªã©ã®ææ³ã§å®çŸã§ããŸãã
- å®åžžæ§ã®æ€å®ïŒæç³»åãæéãéããŠäžå®ã®å¹³åãšåæ£ãæã€ãã©ããã確èªããŸããå€ãã®äºæž¬ã¢ãã«ã¯å®åžžæ§ãå¿ èŠãšããŸããäžè¬çãªæ€å®ã«ã¯æ¡åŒµãã£ãããŒã»ãã©ãŒïŒADFïŒæ€å®ããããŸããéå®åžžãªå Žåã¯ãå·®åãåããªã©ã®ææ³ãé©çšã§ããŸãã
äºæž¬ææ³ïŒè©³çްãªè§£èª¬
ããã€ãã®äºæž¬ææ³ããããããããã«é·æãšçæããããŸããææ³ã®éžæã¯ãããŒã¿ã®ç¹æ§ãšäºæž¬ã®ç®çã«ãã£ãŠç°ãªããŸãã以äžã«äžè¬çãªææ³ãããã€ã玹ä»ããŸãïŒ
1. ãã€ãŒãäºæž¬
æãåçŽãªäºæž¬æ¹æ³ã§ããæ¬¡ã®å€ãæåŸã«èŠ³æž¬ãããå€ãšåãã§ãããšä»®å®ããŸããæ¯èŒã®ããŒã¹ã©ã€ã³ãšããŠåœ¹ç«ã¡ãŸãããã®æ¹æ³ã¯ããçŽè¿èŠ³æž¬å€ãäºæž¬ãšãåŒã°ããŸãã
åŒïŒ `Y(t+1) = Y(t)` (ããã§ Y(t+1) ã¯æ¬¡ã®ã¿ã€ã ã¹ãããã®äºæž¬å€ãY(t) ã¯çŸåšã®ã¿ã€ã ã¹ãããã§ãã)
äŸïŒæšæ¥ã®å£²äžã10,000ãã«ã ã£ãå Žåã仿¥ã®å£²äžã®ãã€ãŒãäºæž¬ã10,000ãã«ã§ãã
2. åçŽå¹³å
ãã¹ãŠã®éå»ã®å€ã®å¹³åãèšç®ããŠã次ã®å€ãäºæž¬ããŸããæç¢ºãªãã¬ã³ããå£ç¯æ§ããªãããŒã¿ã«é©ããŠããŸãã
åŒïŒ `Y(t+1) = (1/n) * Σ Y(i)` (ããã§ n ã¯éå»ã®èŠ³æž¬æ°ãΣ Y(i) ã¯éå»ã®èŠ³æž¬å€ã®åèšã§ãã)
äŸïŒéå»3æ¥éã®å£²äžã10,000ãã«ã12,000ãã«ã11,000ãã«ã ã£ãå Žåãäºæž¬ã¯ (10,000ãã« + 12,000ãã« + 11,000ãã«) / 3 = 11,000ãã«ã§ãã
3. ç§»åå¹³å (MA)
äžå®æ°ã®æè¿ã®èŠ³æž¬å€ã®å¹³åãèšç®ããŸããããŒã¿ãå¹³æ»åããçæçãªå€åãé€å»ããã®ã«åœ¹ç«ã¡ãŸãããŠã£ã³ããŠãµã€ãºãå¹³æ»åã®ã¬ãã«ã決å®ããŸãã
åŒïŒ `Y(t+1) = (1/k) * Σ Y(t-i)` (ããã§ k ã¯ãŠã£ã³ããŠãµã€ãºãi ã¯0ããk-1ã®ç¯å²ã§ãã)
äŸïŒ3æ¥éã®ç§»åå¹³åã¯ãéå»3æ¥éã®å£²äžãå¹³åããŠç¿æ¥ã®å£²äžãäºæž¬ããŸãããã®æ¹æ³ã¯ãäžççã«åžå ŽããŒã¿ãå¹³æ»åããããã«äœ¿çšãããŸãã
4. ææ°å¹³æ»æ³
éå»ã®èŠ³æž¬å€ã«ææ°é¢æ°çã«æžå°ããéã¿ãå²ãåœãŠãäžé£ã®äºæž¬æ¹æ³ã§ããããæè¿ã®èŠ³æž¬å€ã»ã©é«ãéã¿ãæã¡ãŸããããã€ãã®ããªãšãŒã·ã§ã³ãååšããŸãïŒ
- åçŽææ°å¹³æ»æ³ïŒãã¬ã³ããå£ç¯æ§ã®ãªãããŒã¿åãã
- äºéææ°å¹³æ»æ³ïŒãã«ãã®ç·åœ¢ãã¬ã³ãæ³ïŒïŒãã¬ã³ãã®ããããŒã¿åãã
- äžéææ°å¹³æ»æ³ïŒãã«ãã»ãŠã£ã³ã¿ãŒã¹æ³ïŒïŒãã¬ã³ããšå£ç¯æ§ã®ããããŒã¿åãããã®æ¹æ³ã¯ãäžçäžã®ãµãã©ã€ãã§ãŒã³ç®¡çã§é »ç¹ã«å©çšãããŸããäŸãã°ãã¢ãžã¢å€ªå¹³æŽå°åãåç±³ããšãŒããããªã©ã®ç°ãªãå°åã§ã®è£œåéèŠãäºæž¬ããåšåº«ãæé©åããŠã³ã¹ããæå°éã«æããããã«äœ¿çšãããŸãã
åŒïŒåçŽææ°å¹³æ»æ³ã®ç°¡ç¥çïŒïŒ * `Level(t) = α * Y(t) + (1 - α) * Level(t-1)` * `Forecast(t+1) = Level(t)` ããã§ã`Level(t)`ã¯æå»tã§ã®å¹³æ»åãããã¬ãã«ã`Y(t)`ã¯æå»tã§ã®èŠ³æž¬å€ã`α`ã¯å¹³æ»åä¿æ°ïŒ0 < α < 1ïŒã`Forecast(t+1)`ã¯æ¬¡ã®æéã®äºæž¬ã§ãã
5. ARIMAïŒèªå·±ååž°ååç§»åå¹³åïŒã¢ãã«
èªå·±ååž°ãå·®åãç§»åå¹³åã®èŠçŽ ãçµã¿åããã匷åãªã¢ãã«çŸ€ã§ããARIMAã¢ãã«ã¯3ã€ã®ãã©ã¡ãŒã¿ (p, d, q) ã§å®çŸ©ãããŸãïŒ
- pïŒèªå·±ååž°ïŒïŒèªå·±ååž°èŠçŽ ã®æ¬¡æ°ïŒã¢ãã«ã§äœ¿çšãããã©ã°ä»ã芳枬å€ã®æ°ïŒã
- dïŒååïŒïŒå·®åã®éæ°ïŒããŒã¿ãå®åžžåããããã«å·®åãåã£ãåæ°ïŒã
- qïŒç§»åå¹³åïŒïŒç§»åå¹³åèŠçŽ ã®æ¬¡æ°ïŒã¢ãã«ã§äœ¿çšãããã©ã°ä»ãäºæž¬èª€å·®ã®æ°ïŒã
ARIMAã¢ãã«ãæ§ç¯ããæé ïŒ 1. å®åžžæ§ã®ç¢ºèªïŒADFæ€å®ã確èªããå¿ èŠã«å¿ããŠå·®åãé©çšããŠããŒã¿ãå®åžžã§ããããšã確èªããŸãã 2. p, d, q ã®ç¹å®ïŒACFïŒèªå·±çžé¢é¢æ°ïŒããã³PACFïŒåèªå·±çžé¢é¢æ°ïŒã®ããããã䜿çšããŸãã 3. ã¢ãã«ã®æšå®ïŒã¢ãã«ã®ãã©ã¡ãŒã¿ãæšå®ããŸãã 4. ã¢ãã«ã®è©äŸ¡ïŒAICïŒèµ€æ± æ å ±éèŠæºïŒãBICïŒãã€ãºæ å ±éèŠæºïŒãªã©ã®ææšã䜿çšããŠã¢ãã«ãè©äŸ¡ããæ®å·®ã確èªããŸãã 5. äºæž¬ïŒé©åããã¢ãã«ã䜿çšããŠäºæž¬ãçæããŸãã
äŸïŒARIMA(1,1,1)ã¯ãåŸå±å€æ°ã®1ã€ã®ã©ã°ïŒèªå·±ååž°èŠçŽ ïŒã䜿çšããããŒã¿ã1åå·®åããæ®å·®èª€å·®ã1æéã«ããã£ãŠå¹³åããŸãïŒç§»åå¹³åïŒã
6. å£ç¯æ§ARIMA (SARIMA) ã¢ãã«
å£ç¯æ§ã«å¯Ÿå¿ããããã«ARIMAã¢ãã«ãæ¡åŒµãããã®ã§ããå£ç¯æ§èŠçŽ ã (P, D, Q)m ã®åœ¢ã§çµã¿èŸŒã¿ãŸããããã§ãP, D, Q ã¯ããããå£ç¯æ§ã®èªå·±ååž°ãå£ç¯æ§ã®å·®åãå£ç¯æ§ã®ç§»åå¹³åã®æ¬¡æ°ã衚ããm ã¯å£ç¯åšæïŒäŸïŒææ¬¡ããŒã¿ã§ã¯12ãååæããŒã¿ã§ã¯4ïŒã§ãããã®ææ³ã¯ãæ¥æ¬ããã€ãããã©ãžã«ãªã©ã®åœã ã§ã匷ãå£ç¯æ§ãã¿ãŒã³ãæã€çµæžããŒã¿ãåæããããã«ãã䜿çšãããŸãã
åŒïŒèª¬æã®ããç°¡ç¥åïŒïŒ ARIMA(p, d, q)(P, D, Q)m
7. ãã®ä»ã®æç³»åã¢ãã«
- ProphetïŒFacebookãéçºããã匷ãå£ç¯æ§ãšãã¬ã³ããæã€æç³»åããŒã¿åãã«èšèšãããã¢ãã«ãæ¬ æããŒã¿ãå€ãå€ã广çã«åŠçããŸãããŠã§ããµã€ãã®ãã©ãã£ãã¯ã売äžããã®ä»ã®ããžãã¹ææšã®äºæž¬ã«äžè¬çã«äœ¿çšãããŸãã
- ãã¯ãã«èªå·±ååž°ïŒVARïŒïŒè€æ°ã®æç³»å倿°ãåæã«äºæž¬ããããã«äœ¿çšããããããã®çžäºäŸåæ§ãèæ ®ããŸããçµæžåŠã§ã€ã³ãã¬ã倱æ¥çãªã©ã®ãã¯ãçµæžå€æ°ãã¢ãã«åããããã«äœ¿çšãããŸãã
- GARCHïŒäžè¬åèªå·±ååž°æ¡ä»¶ä»ã忣äžåäžïŒã¢ãã«ïŒæç³»åããŒã¿ãç¹ã«éèæç³»åããŒã¿ã®ãã©ãã£ãªãã£ãã¢ãã«åããããã«äœ¿çšãããŸããäŸãã°ãäžæµ·èšŒåžååŒæããã¥ãŒãšãŒã¯èšŒåžååŒæãªã©ã®æ ªåŒåžå Žã®ãã©ãã£ãªãã£ã¢ããªã³ã°ã«æçšã§ãã
äºæž¬ããã©ãŒãã³ã¹ã®è©äŸ¡
äºæž¬ã®ç²ŸåºŠãè©äŸ¡ããããšã¯éåžžã«éèŠã§ãããã®ç®çã®ããã«ãããã€ãã®ææšã䜿çšãããŸãïŒ
- å¹³å絶察誀差ïŒMAEïŒïŒå®çžŸå€ãšäºæž¬å€ã®çµ¶å¯Ÿå·®ã®å¹³åãè§£éã容æã§ãã
- å¹³åäºä¹èª€å·®ïŒMSEïŒïŒå®çžŸå€ãšäºæž¬å€ã®äºä¹å·®ã®å¹³åãå€ãå€ã«ææã§ãã
- äºä¹å¹³åå¹³æ¹æ ¹èª€å·®ïŒRMSEïŒïŒMSEã®å¹³æ¹æ ¹ãããŒã¿ãšåãåäœã§èª€å·®ãæäŸããŸãã
- å¹³å絶察ããŒã»ã³ã誀差ïŒMAPEïŒïŒå®çžŸå€ãšäºæž¬å€ã®çµ¶å¯ŸããŒã»ã³ãå·®ã®å¹³åã誀差ãããŒã»ã³ããŒãžã§è¡šçŸãããããç°ãªãã¹ã±ãŒã«ã®äºæž¬ãæ¯èŒããã®ã容æã§ãããã ããå®çžŸå€ããŒãã«è¿ãå Žåã¯ä¿¡é Œæ§ãäœããªãããšããããŸãã
- Räºä¹ïŒæ±ºå®ä¿æ°ïŒïŒåŸå±å€æ°ã®åæ£ã®ãã¡ãç¬ç«å€æ°ããäºæž¬ã§ããå²åãæž¬å®ããŸãã
æç³»åäºæž¬ã®å®è£
æç³»åäºæž¬ã®å®è£ ã«ã¯ãããã€ãã®å®è·µçãªã¹ããããå«ãŸããŸãïŒ
- ããŒã¿åéïŒé¢é£ããæç³»åããŒã¿ãåéããŸãã
- ããŒã¿æ¢çŽ¢ïŒããŒã¿ãèŠèŠåãããã¿ãŒã³ãç¹å®ããæç³»åã®ç¹æ§ãçè§£ããŸãã
- ããŒã¿ã®ååŠçïŒäžèšã®ããã«ãã¢ããªã³ã°ã®ããã«ããŒã¿ãã¯ãªãŒãã³ã°ãå€æãæºåããŸãã
- ã¢ãã«éžæïŒããŒã¿ã®ç¹æ§ãšäºæž¬ã®ç®çã«åºã¥ããŠãé©åãªäºæž¬æ¹æ³ãéžæããŸãããã¬ã³ããå£ç¯æ§ãå€ãå€ã®åŠçã®å¿ èŠæ§ãèæ ®ããŸãã
- ã¢ãã«ã®ãã¬ãŒãã³ã°ïŒéžæããã¢ãã«ãéå»ã®ããŒã¿ã§ãã¬ãŒãã³ã°ããŸãã
- ã¢ãã«ã®è©äŸ¡ïŒé©åãªè©äŸ¡ææšã䜿çšããŠã¢ãã«ã®ããã©ãŒãã³ã¹ãè©äŸ¡ããŸãã
- ã¢ãã«ã®ãã¥ãŒãã³ã°ïŒã¢ãã«ã®ãã©ã¡ãŒã¿ãæé©åããŠç²ŸåºŠãåäžãããŸãã
- äºæž¬ïŒåžæããå°æ¥ã®æéã®äºæž¬ãçæããŸãã
- ç£èŠãšä¿å®ïŒã¢ãã«ã®ããã©ãŒãã³ã¹ãç¶ç¶çã«ç£èŠãã粟床ãç¶æããããã«æ°ããããŒã¿ã§å®æçã«åãã¬ãŒãã³ã°ããŸãã
ããŒã«ãšã©ã€ãã©ãªïŒæç³»ååæãšäºæž¬ã«ã¯ãæ°å€ãã®ããŒã«ãšããã°ã©ãã³ã°ã©ã€ãã©ãªãå©çšå¯èœã§ãã以äžãå«ãŸããŸãïŒ
- PythonïŒ statsmodelsãscikit-learnãProphet (Facebook)ãpmdarimaãªã©ã®ã©ã€ãã©ãªãå æ¬çãªæ©èœãæäŸããŸãã
- RïŒ forecastãtseriesãTSAãªã©ã®ããã±ãŒãžãåºã䜿çšãããŠããŸãã
- ã¹ãã¬ããã·ãŒããœãããŠã§ã¢ïŒäŸïŒMicrosoft ExcelãGoogle SheetsïŒïŒåºæ¬çãªäºæž¬æ©èœãæäŸããŸãã
- å°éã®çµ±èšãœãããŠã§ã¢ïŒSASãSPSSãMATLABãªã©ãé«åºŠãªæ©èœãšåæãªãã·ã§ã³ãæäŸããŸãã
å®äžçã®å¿çšãšã°ããŒãã«ãªäºäŸ
æç³»ååæã¯ã倿§ãªç£æ¥ãå°åã§å¿çšã§ããæ±çšæ§ã®é«ãããŒã«ã§ãïŒ
- éèäºæž¬ïŒæ ªäŸ¡ãçºæ¿ã¬ãŒããåžå Žãã¬ã³ãã®äºæž¬ãäžçäžã®æè³éè¡ããããžãã¡ã³ãããããã®ææ³ã䜿çšããŠããŸãã
- éèŠäºæž¬ïŒè£œåéèŠã®äºæž¬ãåšåº«ã¬ãã«ã®æé©åããµãã©ã€ãã§ãŒã³ã®ç®¡çããŠã©ã«ããŒãïŒç±³åœïŒãã«ã«ããŒã«ïŒãã©ã³ã¹ïŒãªã©ã®å°å£²äŒæ¥ããã°ããŒãã«ãªãµãã©ã€ãã§ãŒã³ã管çããããã«ããããå©çšããŠããŸãã
- 売äžäºæž¬ïŒå°æ¥ã®å£²äžäºæž¬ãå£ç¯ãã¿ãŒã³ã®ç¹å®ãããŒã±ãã£ã³ã°ãã£ã³ããŒã³ã®èšç»ãã¢ãªããïŒäžåœïŒãAmazonãªã©ã®ã°ããŒãã«ãªeã³ããŒã¹ãã©ãããã©ãŒã ã§åºã䜿çšãããŠããŸãã
- çµæžäºæž¬ïŒGDPãã€ã³ãã¬ã倱æ¥çãªã©ã®çµæžææšã®äºæž¬ãé£éŠæºåå¶åºŠïŒç±³åœïŒã欧å·äžå€®éè¡ïŒãŠãŒãåïŒãã€ã³ã°ã©ã³ãéè¡ïŒè±åœïŒãªã©ãäžçäžã®äžå€®éè¡ãæ¿ç決å®ã®ããã«æç³»åã¢ãã«ã«äŸåããŠããŸãã
- ãã«ã¹ã±ã¢äºæž¬ïŒå ¥é¢æ£è æ°ãç æ°ã®çºçããªãœãŒã¹é åã®äºæž¬ãã«ããããªãŒã¹ãã©ãªã¢ãã€ã³ããªã©ã®åœã ã®ç é¢ãå ¬è¡è¡çæ©é¢ããã€ã³ãã«ãšã³ã¶ã·ãŒãºã³ãã¢ãŠããã¬ã€ã¯ã«åããããã«ããã䜿çšããŠããŸãã
- ãšãã«ã®ãŒäºæž¬ïŒãšãã«ã®ãŒæ¶è²»éãšçºé»éãäºæž¬ãããšãã«ã®ãŒé åãæé©åããŠã³ã¹ããåæžããŸãããã«ãŠã§ãŒããµãŠãžã¢ã©ãã¢ãªã©ã®åœã ã®é»åäŒç€Ÿãããã䜿çšããŠããŸãã
- 亀éäºæž¬ïŒäº€éæµã®äºæž¬ãå ¬å ±äº€éæ©é¢ã®æé©åãã€ã³ãã©ãããžã§ã¯ãã®èšç»ããšãŒãããïŒäŸïŒãã³ãã³ããã«ãªã³ïŒãåç±³ïŒäŸïŒãã¥ãŒãšãŒã¯åžïŒã®å ¬å ±äº€éæ©é¢ããããé »ç¹ã«äœ¿çšããŠããŸãã
ãããã¯ãæç³»ååæãäžçäžã§ã©ã®ããã«å¿çšã§ãããã®ã»ãã®äžäŸã§ãã䜿çšãããå ·äœçãªæ¹æ³ãæè¡ã¯ãæ¥çãããŒã¿ã®ç¹æ§ãäºæž¬ã®ç®çã«ãã£ãŠç°ãªããŸãã
ãã¹ããã©ã¯ãã£ã¹ãšèæ ®äºé
æ£ç¢ºã§ä¿¡é Œæ§ã®é«ãäºæž¬ã確ä¿ããããã«ã以äžã®ãã¹ããã©ã¯ãã£ã¹ãèæ ®ããŠãã ããïŒ
- ããŒã¿å質ïŒããŒã¿ãæ£ç¢ºã§ãå®å šã§ããšã©ãŒããªãããšã確èªããŸããé©åãªããŒã¿æ€èšŒæè¡ã䜿çšããŸãã
- ããŒã¿ã®çè§£ïŒãã¬ã³ããå£ç¯æ§ãåšææ§ãªã©ãããŒã¿ã®ç¹æ§ã培åºçã«çè§£ããŸãã
- ã¢ãã«éžæïŒããŒã¿ãšäºæž¬ã®ç®çã«åºã¥ããŠãæãé©åãªäºæž¬æ¹æ³ãéžæããŸãã
- ã¢ãã«æ€èšŒïŒé©åãªè©äŸ¡ææšã䜿çšããŠã¢ãã«ã®ããã©ãŒãã³ã¹ãæ€èšŒããŸãã
- 宿çãªåãã¬ãŒãã³ã°ïŒç²ŸåºŠãç¶æããããã«ãæ°ããããŒã¿ã§ã¢ãã«ã宿çã«åãã¬ãŒãã³ã°ããŸãã
- ç¹åŸŽéãšã³ãžãã¢ãªã³ã°ïŒäºæž¬ç²ŸåºŠãåäžãããããã«ãå€éšå€æ°ïŒäŸïŒçµæžææšãããŒã±ãã£ã³ã°ãã£ã³ããŒã³ïŒã®çµã¿èŸŒã¿ãæ€èšããŸãã
- è§£éå¯èœæ§ïŒã¢ãã«ãè§£éå¯èœã§ãããçµæãçè§£ã§ããããšã確èªããŸãã
- ãã¡ã€ã³ç¥èïŒããè¯ãçµæãåŸãããã«ãçµ±èšçææ³ãšãã¡ã€ã³ç¥èãçµã¿åãããŸãã
- éææ§ïŒäºæž¬ããã»ã¹äžã«äœ¿çšãããæ¹æ³è«ãšä»®å®ãææžåããŸãã
æç³»ååæã«ããã課é¡
æç³»ååæã¯åŒ·åãªããŒã«ã§ãããããã€ãã®èª²é¡ã䌎ããŸãïŒ
- ããŒã¿å質ïŒãã€ãºã®å€ããäžå®å šãªããŸãã¯èª€ã£ãããŒã¿ã®åŠçã
- éå®åžžæ§ïŒéå®åžžãªããŒã¿ãžã®å¯ŸåŠãšé©åãªå€æã®é©çšã
- ã¢ãã«ã®è€éãïŒé©åãªã¢ãã«ã®éžæãšãã©ã¡ãŒã¿ã®ãã¥ãŒãã³ã°ã
- éå°é©åïŒã¢ãã«ããã¬ãŒãã³ã°ããŒã¿ã«é©åãããããšãæ±åæ§èœãäœäžããã®ãé²ããŸãã
- å€ãå€ã®åŠçïŒå€ãå€ã®ç¹å®ãšåŠçã
- é©åãªãã©ã¡ãŒã¿ã®éžæïŒç¹å®ã®æç³»ååæææ³ã®ãã©ã¡ãŒã¿ã®éžæãäŸãã°ãç§»åå¹³åã®ãŠã£ã³ããŠãµã€ãºãææ°å¹³æ»æ³ã®å¹³æ»åä¿æ°ãªã©ã
çµè«ïŒæç³»ååæã®æªæ¥
æç³»ååæã¯äŸç¶ãšããŠéèŠãªåéã§ãããäžçäžã®äŒæ¥ãçµç¹ããŸããŸã倧éã®ããŒã¿ãçæããã«ã€ããŠããã®éèŠæ§ã¯å¢ãã°ããã§ããããŒã¿ã®å©çšå¯èœæ§ãæ¡å€§ãç¶ããèšç®ãªãœãŒã¹ãããå©çšãããããªãã«ã€ããŠãæç³»åäºæž¬ææ³ã®é«åºŠåã¯é²ã¿ç¶ããã§ãããããã£ãŒãã©ãŒãã³ã°ã¢ãã«ïŒäŸïŒãªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒãªã©ã®æ©æ¢°åŠç¿æè¡ã®çµ±åã¯ããã®åéã®ã€ãããŒã·ã§ã³ãæšé²ããããã«æ£ç¢ºã§æŽå¯ã«æºã¡ãäºæž¬ãå¯èœã«ããŠããŸããäžçäžã®ããããèŠæš¡ã®çµç¹ããããŒã¿é§ååã®æææ±ºå®ãè¡ããç«¶äºåªäœæ§ãåŸãããã«æç³»ååæã䜿çšããŠããŸãããã®å æ¬çãªã¬ã€ãã¯ããããã®åŒ·åãªæè¡ãçè§£ãé©çšããããã®åŒ·åºãªåºç€ãæäŸããŸãã